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Abstract-Rice et ai. (Journal of Mechanics and Physics of Solids 42,813-843) analyze the propa
gation of a planar crack with a nominally straight front in a model elastic solid with a single
displacement component. Using the form of Willis et al. (Journal of the Mechanics and Physics of
Solids 43, 319-341), of dynamic mode I weight functions for a moving crack, we address that
problem solved by Rice et al. in the 3D context of elastodynamic theory. Oscillatory crack tip
motion results from constructive-destructive interference of stress intensity waves. Those waves,
including system of the dilatational, shear and Rayleigh waves, interact on each other and with
moving edge of crack, can lead to continuing fluctuations of the crack front and propagation
velocity. © 1997 Elsevier Science Ltd.

I. INTRODUCTION

Experimental measurements by Fineberg et at. (1992) indicate that, in at least one plastic
material, the limiting fracture speed is significantly less than the Rayleigh velocity, and the
approach to this limiting speed is accompanied by the onset of a dynamic instability.

Some insight regarding these issues can be obtained from the study of crack advance
through brittle, locally heterogeneous materials (Fig, 1). In general, the fracture resistance
(local fracture toughness) varies along the front of an advancing macroscopic crack due
to microlevel heterogeneties, such as second-phase tough particles which can develop
macroscopic toughing of a brittle matrix. Rice (1985), Gao and Rice (1989), Gao (1993)
and Rice et at. (1994) developed a simplified analysis, based on linear perturbation theory
for the configuration of an initially straight crack front which is trapped against forward
advance by contact with arrays of obstacles. The obstacles are modeled as having the same
elastic properties as the rest of the elastic medium, but with slightly higher fracture tough
ness. The half-plane crack results models finite-sized cracks, assuming the lengths of the
cracks are large compared to other parameters such as obstacles spacing along the crack,

The motivation for our work derived for recent studies by Rice et at. (1994) , of the
perturbation from straightness of the edge of a propagating semi-infinite crack and the
associated perturbation of the stress intensity factor, and by Willis et at. (1995), of dynamic
mode I weight functions for a moving crack. Rice et at. (1994) analyzed a scalar wave
equation. They found how a crack front moves unsteadily through regions of locally
variable fracture resistance. Although in some respects such model results may provide a
mechanism for the generation of rough tensile fracture surfaces when the average propa
gation speed of the crack is relatively small, it is important to derive exact results for some
perturbation in z about a history Ii = v(t) of motion that has arbitrary time dependent in
the context of actual elasticity theory.

In a substantial paper, Willis et at. (1995) found dynamic weight functions for arbitrary
time-dependent loading of a plane semi-infinite crack extending at constant speed in an
infinite isotropic elastic body. In the framework of first-order perturbation theory, the
weight function is then employed to develop a relationship, between the Mode I stress
intensity factory and a small but otherwise arbitrary time-varying deviation from straight
ness of the edge of a crack. The associated stress intensity factor was recognized as
convolutions and the meanings of parameters in their dynamic weight functions are implicit
and not very clear.
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Periodic array of asperities:
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Fig. I. A half-plane crack with an initially straight front, propagating to contact a periodic row of
circular asperities of higher fracture toughness.

Our primary purpose in the investigation here is to reexamine the problem of relating
a small deviation from straightness of the crack to the associated perturbation of stress
intensity factor, with the view toward exposing interact phenomena between crack trapping
and wave trapping. By virtue of the Mode I dynamic weight function and Rice et ol. model
methods, we hope to learn how the crack front begins to surround and penetrate into
various arrays of round obstacles and the extent to which such models results remain valid
in the context of actual elasticity theory, rather than the modal theory.

2. PROBLEM STATEMENT AND WEIGHT FUNCTIONS

Consider a half-plane crack propagating in an unbounded solid, nominally in the x
direction along the plane y = 0 (Fig. 2). The crack front at time t lies along the arc x = o(z, t)
while we assume to have the form x = Vt+B¢(t,Z), where the function ¢ (t,z) is assumed
to be bounded, and B is a small parameter. The crack front speed thus varies along the z
axis and its shape deviates from straightness.

In the framework of first-order perturbation theory, the displacement, stress and stress
intensity factor fields associated with the perturbed crack are represented as ui +ilui , (Tij+ il(Tij
and K + ilK, respectively, where Ui, (Tij and K are the fields which give the unperturbed crack
(straight crack) solution when B = 0, i.e., they were satisfied that:

The equation of motion

(1)

'L------t------x

a(z,l)-

Z

Fig. 2. A half-plane crack in unbound solid, propagating on plane y = 0 with non-straight front.



Mode I perturbation solution

Initial condition:

Boundary conditions:

Stress strain relation:

where

Local dynamic stress intensity factor along the crack edge:
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(2)

(3)

(4)

(4)'

(5)

Following Willis et al., the associated perturbed stress intensity factor field may be
expressed as

AK(t,z) = s(Q*(<I>K)-<I>(Q*K)+ A<I>M) (6)

where "*,, signifies the convolution over the variable t, X, z, interpreted in the sense of
generalized functions and 0 denotes crack perturbation, function Q, M are denoted as:

I iJ2 (Fr( - Z/t)tH(t-1z1/aa))
Q(t, z) = -2 Qa(t, z) - Qc(t, z) - - 0 - F;(O)<5'(t)<5(z)ot2 nz"

and

( W) ~b -~;; (I (Y+Z)
F RJ = 2nl~21 Jo In Y-z ds

(7a-d)

Y= (~f+~~+fJ2(~1-~t)(~I-~b))2

Z = 4(~f + (DafJ((~ I - (;;)(~1- ~b)(~ 1- ~:)(~ I - ~:))1!2
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(8a-g)

where a, b, c denote the speeds of dilatational, shear and Rayleigh waves, respectively.

(9)

and here is [U](+l the Mode I dynamic weight function defined by Willis et al., its expression
can be found from Appendix 1, and p'(-l is

p'H = :;H(-X). (10)

The significance in fracture of M would depend upon the loading distribution on crack
edge in the particular problem under discussion, and admission of a non-zero M would
significance complicate the result, because the transform would no longer be an homo
geneous function. As the first step toward exposing interact phenomena between crack
trapping and wave trapping, we only consider the case of constant K and zero M in this
paper. So the term Q*K vanishes, and 11K and <D satisfy

I1K(t, z) = K(e<D*Q) = K[(a(z, t)-a(', t))*Q(t,z)] (11)

where' denotes some reference location' along the z axis, and for the Mode I problem, in
virtue of eqn (7) and eqn (8), one finds

( (
1 iY (Fr( -z/t)tH(t-1Z!/C.W))

I1K(t, z) = K (a(z, t) -a(C t))* 2. Qa(t, z) - Qc(t, z) - ot2 7[
Z

2

- F;(O)c5'(t)c5(z)) (12)

where

1
I1KAt, z) = 2. K«a(z, t) -a(', t))*Qa(t, z))

1 Ico Ico ( V 1= PV - K (a(z', n -aW,t')) -c5'(t- nc5(z-z')--
2 -co -co a?a2 7[r:x

o ( (t- n H(t- t' -Iz- z/l/exa) )} , ,x -- dz dt
at (Z-Z')2 J(t-n2-(z-z,)2/ex2a2

= ~ ((~a(z, t) _ oa(', t))~ Ico Ico (aa(z" n_aa(C n)
PV2 K at at ex2a2 + -co -co at' at'

1 (t-nH(t-t'-lz-z'l/exa)d 'd'}x--- z t.
7[ex(z - ZI)2 J (t - n2 - (z- Z')2 /ex2a2

(14)

The choice of' in the above development is arbitrary, we may rename' as z in the
final expression, and set aa(', t)/ot' = V(', n = V(z, n, thus
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K foo fHz-z"/aa a(t-t')(V(zl t')- V(z t')
~KaCt,z) = - PV " dz' dt'.

2n -00 -oc (z- zYJ (t- t')2C(2 a2- (Z-Z')2

Using same procedure, we obtain that

K foc ft-,z-Z'liYC c(t_t')(V(ZI,t')-V(Z,t')
~KAt, z) = ~ PV dz' dt'

n -00 - 00 (z- z/f J (t- t')2 y2C2 - (Z- Z')2

(Vt(ZI, t') - Vt(Z, t')(t- t')Fr(- Z-Z:)
K foo ft-1z-z"/aa t-t

~Kit,z) = --; PV 1 2 dz' dt',
-00 -00 (Z-Z)
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(15)

(16)

(17)

with PV denoting the principal value integral and V(z, t) = aa(z, t)lat, Vt(z, t) = aV(z, t)lat
being the local crack velocity and acceleration, respectively.

The stress intensity factor field associated with the perturbed crack is then

(18)

We derive the 3D solution as a linearized perturbation about the 2D results for a crack
moving at a steady speed Vo under mode I situation, and hence for which

(19)

where

(20)

K*, G* being the static factors.
The energy vector factor g(V) has complex functional form but it can be taken to be

very simple form as eqn (20) for most practical purposes [e.g., Freund (1990)].
The result (18) can be rewritten as

where

K(t, z) = k(V)K*(1 + la(z, t) - lc(z, t) - liz, t»

1 foo fHz-z'l,a a(t-t')(V(zl,t')-V(z,t') I'
la(z, t) = - PV dz dt

2n -00 - 00 (z- Z')2 J (t - t'fC(2 a2- (z - Z')2

1 foo ft-,z-Z'IIYC c(t-t')(V(ZI,t')-V(Z,t') 'I
lc(t, z) = - PV dz dt

n -00 -00 (z - Z')2J (t- t')2 y2c2
- (z - ZI)2

(Vt(ZI,t')- Vt(Z,t')(t-t')Fr (- z-z:)
I foo ft-,z-z'llaa t-t 'I

liz, t) = - PV dz dt .
n -00 -00 (Z-Z/)2

(21)

(22)

From the above expression, we can learn that the dependency of the stress intensity
factor on crack front shape deviations from straightness is given in these integrals as a
functional of velocity and acceleration differences along the crack tip during the entire
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history of the crack motion. Examination of the expression for these integrals shows that
there is the system of waves produced in mode I situation, including the dilatational waves,
shear waves and Rayleigh waves. Those waves interact on each other and with the moving
edge of crack, so that associated stress intensity factor history shows very complex feature
(e.g., Li and Liu (1994), (1995)). After the crack has propagated beyond the local het
erogeneities of fracture resistance which launched them, as Rice et al. noted that, the
constructive and destructive interference can lead to continuing fluctuations of the crack
front shape and propagation velocity even when the front is moving through material of
locally uniform fracture resistance.

Following Rice et al. (1994), the fracture criterion is

G(z, t) = Gcri , (x, z) (23)

at points x = a(z, t) along the rupture front where V(z, t) > O. Here G(z, t) is the energy
release rate per unit of new crack area and the critical energy release rate, Gcrit(x, z) is
regarded as a material property.

Using the relation between the energy release rate and the dynamic stress intensity
factor, we give that

G = G*g( V) (1 + IaCz, t) - Ic(z, t) - If(z, t))2 (24)

where G* = (1- v2)/(2E) (K*)2 is the rest energy release rate supplied to a straight crack
front.

From (23) and (24), the space and time varying motion of the crack front is governed
by

where

(
C(1 - A(z, t)), if A(z, t) < 1)

V(z, t) = 0 if A(z, t) ;:: 1 (25)

(25)'

3. FOURIER REPRESENTATION OF RESULTS

For purposes of numerical analysis of spontaneous crack growth, it is convenient to
recast the results above in terms of Fourier components, in z, of a(z, t).

Considering the domain of integration and changing the order and limits of the integral
in (22), we have

1 fl 1z +,o(l-1') a(t-t')(V(z',t')-V(z,t')) "
I (z t) = - dz dt
a' 2n (')2J( ')2 2 2 ( ')2-cD =-"0(1-1') Z-Z t-t a a - z-z

If' iZ+?C(I-1') c(t-t')(V(z',t'}-V(z,t')) "
IJz, t) = - dz dt

n -00 z-yc(l-t') (Z-Z')2J(t_t')2y2c2_(Z-X')2

(
z-z')(V,(Z', t')- V,(z, t'))(t-t')Fr - --,

1f' iZ+M(I-1') t- t
Ir(z, t) = - , 2 dz'dt'

n -'x =-'0(1-1') (z-z)

where the principal value of the integrals is assumed implicitly.
Using in (26), the variable substitution z' = z+aa( t - t') sin 8 gives

(26)
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(
-_l~ft 1 f n/2, V(z+Cta(t-t')sin8,t') __ V(z,t') ,

I a z, t) - ') d8dt
2n:l( _ X> IY.a(t - t -ni2 sin2 8

-~ft 1 fni2 V(z+yc(t-t')sin8,t')-V(z,t') ,
(z, t) - , d8 dt

ny -X> yc(t- t) -n/2 sin2 8
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()
1 ft fni2 Fr(IY.asin8)Vt(z+IY.a(t-t')sin8,t')-V,(z,t') CJ CJ ,

If z, t = - , 2 COS u do dt. (27)
nIY.a _ X> -n12 Sin 8

We use for a(z, t) and V(z, t) the Fourier representation

N _

a(z, t) = I An(t)ei2nnj:
n= -N

N • . z

V(z, t) = I An(t)eI2nn;:
n= -N

N _

V,(z, t) = I A'n(t)ei2nnI.
n= --N

(28)

Where N is chosen as a power of 2 and the over-dot denotes a derivative with respect
to time. Here Ao(t) and AN(t) are real, and A_n(t) is the complex conjugate of Ait) so that
{An(t)} involves N real functions, and similar remarks apply to the set {An(t)} and {A'it)}.
One require n Ani}. « 1 and Ani Vo« 1, and we assume An( - 00) = 0, A'i - 00) = °for
n # 0, we thus obtain

N •

I(o)(z, t) = I I~0)(t)ei2nn5: *:= a, c,f
n= -1'./

where the coefficients are obtained as

1 fl AnCt') fn l2 exp(iPa sin 9) - 1dO d
I"(t) = - ~ t'
n 2nIY. _ooIY.a(t-t') -ni2 sin2 9

1 f' A (t') fni2 exp(iR. sin 9)-1["(t)=- n Pc d9dt'
n ny _ocyc(t-t') -n12 sin2 9

f 1 fl fn/2, Fr(IY.asin9)A·n(t')(exp(if3nsin9)-l) f\df\d'
In(t) = - , 2 cos ~ ~ t

nIY.IY. _ X> _ ni2 Sin 9

and where

2nnIY.a(t - t') 2nnyc(t - t')
f3a = .Ie f3c = ).

set

f
n

l 2, exp(if3 sin 9) - 1 f\
Q(f3) = , 2 d~

-n/2 n Sin 9

note that

(29)

(29)'

(30)

(31)
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Q"(q) = -Jo(P), Q(O) = Q'(O) = o. (31)'

Consider new function F(q) = - Q(q)/q, by virtue of the relations between Q(q) and
F(q), we may obtain (see Appendix 2)

(32)

Using the expression of F(q) , eqn (29)' may be rewritten as

and I~(t) can be rewritten as

I II ..
I~(t) = - A(t')D(t- t') dt'.

nrxa _Cyj

Here

II Fr(rxau)
D(t-t') = 2 (expUPau)-I)du

-1 u

we easily verify that Fr(x) is an even function, that is

Fr(x) = Fr( -x)

therefore, the result (35) may be simplified as

II 2
D(t-t') = -Fr(rxau) cos(Pau) du

o u2

or I~(t) may be written as

. I II.. II 2 (t- t')I~(t) = - . An(t') dt' 2" Fr(rxau) cos 2nnrxa -,- u duo
nrxa ~ 00 0 U A

(33)

(34)

(35)

(36)

(37)

(38)

4. MODAL ANALYSIS OF RECOVERY OF THE STRAIGHT CRACK FRONT FROM A
PERTURBATION

According to strictly linearized analysis concept proposed by Rice et al. (1994), the
strictly linearized form of energy release rate, most conveniently given for

~ ~( IV-Vo )v G(z, t) ~ .....1 Go 1-2" c _ V
o

+ Ia(z, t) - Ie(z, t) - liz, t)

where Go is given by (19).
Substituting in (39) the Fourier representation of V(z, t), la, Ie and If' we have

(39)
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~ ~( 1 Vo ~ ( -1 . nnf"V G(z, t) = V Go 1+ -2~ + L. -2(":" 1/ ) An(t) - -----;- An(t')F(Pa) dt'
C y 0 n~ -N C Yo IJ(/c -00
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(40)

The material property JGcrit(x, z), assumed to be only slightly inhomogeneous for
consistency with a first-order perturbation, can be written as a Fourier series:

1\/ z

~(x, z) = L 9n(x)e'2nn1.
n= -N

(41)

In using the fracture criterion (23), we may approximate x as Vot as is consistent with
a strictly linearized analysis in perturbation amplitude. Thus, the equation governing the
crack tip motion is given by the requirement

We then get for n= 0

and for n i= 0

;r;-( Vo - Ao(t))
V Go 1+ 2(c- Yo) = 90 (VO t)

(42)

(43)

(44)

Applying the Laplace transform to both sides of (44) and set An(t) = Bn(t), we find
that

Bn(s) = 9n(S)

~Cn(S)

where

-1 n1l(IM2 I) 2nn(IM2 I)C S - -- - 1+--- +- - 1+---
n( ) - 2(c- Yo) IJ(A S q; q; }'A S q~ q~

and

(45)

(46)

(47)
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0.20

""'
~ 0.16

0.12 '-- --'- ..L- --l. ...J

o 4.00 8.00 12.00 16.00

Fig. 3. Modal propagation velocity for a_straight crack after a heterogeneous strip, with Va = 0.3c,
p = 0.1, t1 = 0, t, = 0.5, A = 6.0, z = 5.7, c = 0.53851a = 0.93273b.

Applying an inverse Laplace transform to (45), we obtain the modal velocity response
to a toughness heterogeneity as

(48)

Inversion of the transform for Bn(s) less straightforward but it can be carried out by
numerical inversion method.

Consider a simple case ofa finite-width strip, having a single m "# 0 Fourier component
of heterogeneity, embedded in an otherwise homogeneous medium. Specifically, we assume
that besides go, which is constant at )Go, only gm('r:) and g_m('r:) are non-zero (they are
complex conjugate of each other), we write

(49)

where H is the Heaviside unit step function and p is the (small) amplitude.
That is, writing J. for A/lml, the result is that the response to

(50)

for x within the strip, with J Gcrit(x, z) = )Go for x outside it, that the propagation velocity
is

(51)

Figure 3 gives calculations for V(z, I) when Vo = 0.3c, p = 0.1, II = 0, 12 = 0.5 and 2= 2L.
From the figure, we see that when a straight crack enters a heterogeneous region its motion
is modulated by a set of decaying oscillations.

5. NUMERICAL SIMULATION ON DYNAMIC GROWTH OF A CRACK

In this section the previous results are used to simulate the dynamic growth of a crack
along a plane having a non-uniform distribution of critical energy release rate. The plane
of the crack is characterized by a homogeneous "background" critical energy release rate
GcritO, from which there are local perturbations where Gcrit(x, z) "# GcritO '
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Following Rice et al., our simulations begin with a straight crack propagating with a
uniform velocity Voin the region x < O. The calculation of space and time varying dynamic
crack propagation in the heterogeneous region x > 0 (correct to first order) is done using
the following procedure:

(1) Having crack front positions, velocities and accelerations at a general (discrete) time
step mAt

N "
a(z, mAt) = I An(mAt)e j2n"j:

n= -N

N "

V(z, m!!t) = I An(mAt)e j2""j:
n= -N

N "

V,(z, mAt) = L .i£n(mAt)e'2nni.
n= -N

(52)

Use the FFT procedure to calculate from current velocities V(z, mAt), accelerations
V,(z, mAt) the Fourier coefficients AimAt), .i£n(mAt) ; we first FFT the set {v(Zj' t)} to get

m--l .

An(t) = L V(Zj' t)e- 2ni'i (m = 2N)
i~O

this coefficient set {An(t)} is related to

An = Anlm for n = 0 to m12-1

A m/2 = Amd2m for n = m12, - ml2

An = An+m/2/m for n = -mI2+ 1 to-I.

(53)

Verify that first order perturbation conditions AnlVo « 1, nAn!!tl).« 1 are satisfied.
(2) Calculation local crack front velocities for the next time increment as follows:
(2.1) using (33) and (38) and history of Am A'n to calculate the coefficient I~,I~,I~ (mAt),
where the integral calculations ofeqns (33) and (38) by use ofGaussian quadrature formulas
are:

a. nn ~ .~ {(An(ti)+ An(ti- 1) An(ti) - An(ti_ l ) )
In(t,) = - -2 L. L. 2 + 2 Yj

:X i=lj=l

[ (
tj+ti_l ti-t j_ 1 )J}

X F 2nn:x m!!T- --2- + --2-Yj DTwj

[ (
ti+ti 1 tj-ti_ 1 )J}

X F 2nnyc m!!T - 2 - + --2- Yj DTwj

(54)

Here Yj.' wj are the jth Gaussian zeros and weights of order 12, respectively. The third
nonline~r polynomials transform has been used to delete the singular point "0" in the
equation of I~.
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Next, we rearrange from {i:{t)} to {I:{t)}, following the same rules as for rearrange
from {.,t{t)} to {An(t)} above.
(2.2) use FFT to invert 1~(mAt), (a = a, c, F) to I(z, mAt)
(2.3) use (25) and current crack front positions to calculate velocities V(z,(m + 1)At) during
the next time step.
(3) use difference formula to calculate accelerations V,(z,(m+ 1).1t) during the next time
step:

V,(z,(m + I)At) = (V(z,(m+ l)At) - V(z, mAt))/At.

(4) Calculate the local crack front positions at the end of the next time step as

a(z,(m+ 1).1t) = a(z, mAt) + V(z,(m+ l)At)At

(5) Write output, check exit criteria (location of crack front or violation of first order
conditions); increase time index m by 1, go to step (1).

6. RESULTS AND DISCUSSION

Figure 1 shows a periodic array of circular asperities with radius R and center to center
spacing L. Following the conditions of Fares (1989) for the validity of quasi-static first
order analysis and by Gao and Rice (1989), Rice et al. (1994), we choose R/L = 0.1, and
the speed of Rayleigh waves c = 0.53851a = 0.93273b. All calculations have been oon
dimensionalized.

In order to check correctness for our numerical computational program, we firstly
calculated several problems solved by Rice et al. (1994) and obtained same results. Figure
4 shows one of those results using Rice et al. model, calculated for the case Vo = 0.3c,
hitting an infinite row of asperities with Gcrit(left) = Gcrit(right) = 4Go.

Figure 5 shows crack front profiles in the regions at successives times and Gcrit
(left)/Go = 4.0 and Gcrit(right)/Go = 2.0, where Gcrit(left) and Gcrit(right) denote, respectively,
the critical energy release rates of the left and right asperities in a fundamental wavelength
), = 2L. Go denote non-asperity regions. The computations are done using m = 2N = 256
and .1t = A/5Nc. At the initial instant, a straight crack was propagating with a uniform
velocity Vo in the region x < O. The asperities block the crack advancement after it pen
etrates into the inter-asperity Go regions. As a result, the distribution of velocity initial
uniform, turns wavy and shows instability feature in a successive instants. Then the weaker
right asperity broke, the left asperity also broke after some further crack front motion.

Figure 6 shows calculations for the case Vo = 0.45c, hitting an infinite elliptical asperit
ies (z-0.W/3+(X-0.l)2 ~ 0.1 2 and (z-1.5)2/3+(x-0.l)2 ~ 0.1 2 with Gcnt(left)/Go = 3.0
and Gcrit(right)/Go = 2.0, at this relatively large incoming crack velocity, the asperities break
after causing a small retardation in crack front positions. By virtue of the Mode I dynamic

1.0

0.8

s.
q 0.6
N

"iU'
6 0.4
N

"iU'
~ 0.2

0.5 1.0 1.5 2.0

Z/L
Fig. 4. Positions a(z. t) vs z at successive times. for a crack at incoming speed Vo = 0.3c. hitting an
infinite row of asperities with G'ri,(\eft) = 4Go and G"it(right) = 4Go• using Rice et al. model results.
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0.5

0.4

S- 0.30
N; 0.2
N
~

0.1

0

o 0.5 1.0 1.5 2.0

z/L
Fig. 5. Positions a(z, t) vs z at successive times, for a crack at incoming speed Vo = 0.3c, hitting an
infinite row of asperities with G,,,,(left) = 4Go and G"it(right) = 2Go. (a) t = 45~t; (b) t = 120~t;

(c) t = 240M; (d) t = 320~t. Here IJ.t = 1/640.
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Fig. 6. Positions a(z, t) vs z at successive times, for a crack at incoming speed Vo = 0.45c, hitting an
infinite row of elliptical asperities (z-0.W/3+ (x-O.!)' ,,; OY and (z-1.5)'/3 + (x-O.!)' ,,; 0.1'
with G"it(left) = 3Go and G,,,,(right) = 2Go. (a) t = 5Odt; (b) t = 100M; (c) t = 160~t;

(d) t = 220M Here IJ.t = 1/640.

weight function and its numerical simulations in a first order perturbation analysis of the
deviation from straightness of the crack edge, we observe that, oscillatory effects in crack
motion, as denoted by Rice et ai., are found to follow encounter of the crack front with
regions of variable toughness and these may also be interpreted in terms of constructive
destructive interference of stress intensity waves initialed by encounters of the crack front
with asperities and then propagating along the front. These waves, including system of the
dilational, shear and Rayleigh waves, interact on each other and with moving edge of crack,
lead to oscillatory feature of crack front profiles. It seems that the type of oscillatory crack
motion could be the basis for careful recent measurements by Gross et al. (1993).
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APPENDIX

Mode I dynamic weight function [U](+) defines as

where "*,, denotes the convolution over the variable t, X, Z

(ni)'i'( x/a) c[( VX) {{[ VXJ'$+(t,X,z)=-in'C-
X

./ H(X)x" t---Re t---,
~~+~ 0t ~~ ~~

X' ja' ;Z'}-I/'}-[
a'a' _

(A.l)

(A.2)

(A.3)

Detail expression of T(w, (" (,) can be found from Willis et al. (1995).

APPENDIX 2

The function F(q) satisfies equation

2 1
F'(q) + - F(q) = -Jo(q)

q q

easily obtain:

One notes that

. . ( Q'(q) Q(q)) . ( " Q"(q») 1LlmF(q)=Llm---+- =Llm -Q(q)+-2- =-2Jo(0) =0.5.
q~O q_O q q' q_O

While

(A.4)

(B.l)

(B.2)



Mode I perturbation solution

1 J.q 1
Lim- pJo(p)dp = -2 Jo(O) = 0.5
q_O q2 0

thus C = O.
One has

1 1q

F(q) = - Jo(p)p dp.
q2 0

By virtue of the relation between the Bessel functions Jo(/3) and J, (f3)

d
f3Jo(f3) = df3 (f3J, (f3))

one has

1 1q
d J 1 (q)F(q)=- -(pJ,(p))dp=-.

q2 0 dp q

So one obtains eqn (33).
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(B.3)

(B.4)


